Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference

Nucleic Acids Res. 2015 Apr 20;43(7):3407-19. doi: 10.1093/nar/gkv226. Epub 2015 Mar 23.

Abstract

The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and re-invigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today's challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications.

Publication types

  • Review

MeSH terms

  • Animals
  • Clustered Regularly Interspaced Short Palindromic Repeats / genetics*
  • Genetic Engineering*
  • Genome*
  • RNA Interference*