Protective role of insulin-like growth factor-1 receptor in endothelial cells against unilateral ureteral obstruction-induced renal fibrosis

Am J Pathol. 2015 May;185(5):1234-50. doi: 10.1016/j.ajpath.2015.01.027. Epub 2015 Mar 14.

Abstract

Insulin-like growth factor-1 receptor (IGF-1R) can regulate vascular homeostasis and endothelial function. We studied the role of IGF-1R in oxidative stress-induced endothelial dysfunction. Unilateral ureteral obstruction (UUO) was performed in wild-type (WT) mice and mice with endothelial cell (EC)-specific IGF-1R knockout (KO). After UUO in endothelial IGF-1R KO mice, endothelial barrier dysfunction was more severe than in WT mice, as seen by increased inflammatory cell infiltration and vascular endothelial (VE)-cadherin phosphorylation. UUO in endothelial IGF-1R KO mice increased interstitial fibroblast accumulation and enhanced extracellular protein deposition as compared with the WT mice. Endothelial barrier function measured by transendothelial migration in response to hydrogen peroxide (H2O2) was impaired in ECs. Silencing IGF-1R enhanced the influence of H2O2 in disrupting the VE-protein tyrosine phosphatase/VE-cadherin interaction. Overexpression of IGF-1R suppressed H2O2-induced endothelial barrier dysfunction. Furthermore, by using the piggyBac transposon system, we expressed IGF-1R in VE cells in mice. The expression of IGF-1R in ECs also suppressed the inflammatory cell infiltration and renal fibrosis induced by UUO. IGF-1R KO in the VE-cadherin lineage of bone marrow cells had no significant effect on the UUO-induced fibrosis, as compared with control mice. Our results indicate that IGF-1R in the endothelium maintains the endothelial barrier function by stabilization of the VE-protein tyrosine phosphatase/VE-cadherin complex. Decreased expression of IGF-1R impairs endothelial function and increases the fibrosis of kidney disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Blotting, Western
  • Cells, Cultured
  • Disease Models, Animal
  • Endothelial Cells / metabolism*
  • Fibrosis / pathology
  • Humans
  • Immunohistochemistry
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Microscopy, Electron, Transmission
  • Polymerase Chain Reaction
  • Receptor, IGF Type 1 / metabolism*
  • Renal Insufficiency, Chronic / metabolism*
  • Renal Insufficiency, Chronic / pathology
  • Transfection
  • Umbilical Veins
  • Ureteral Obstruction

Substances

  • Receptor, IGF Type 1