Connectivity interplays with age in shaping contagion over networks with vital dynamics

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022809. doi: 10.1103/PhysRevE.91.022809. Epub 2015 Feb 17.

Abstract

The effects of network topology on the emergence and persistence of infectious diseases have been broadly explored in recent years. However, the influence of the vital dynamics of the hosts (i.e., birth-death processes) on the network structure, and their effects on the pattern of epidemics, have received less attention in the scientific community. Here, we study Susceptible-Infected-Recovered(-Susceptible) [SIR(S)] contact processes in standard networks (of Erdös-Rényi and Barabási-Albert type) that are subject to host demography. Accounting for the vital dynamics of hosts is far from trivial, and it causes the scale-free networks to lose their characteristic fat-tailed degree distribution. We introduce a broad class of models that integrate the birth and death of individuals (nodes) with the simplest mechanisms of infection and recovery, thus generating age-degree structured networks of hosts that interact in a complex manner. In our models, the epidemiological state of each individual may depend both on the number of contacts (which changes through time because of the birth-death process) and on its age, paving the way for a possible age-dependent description of contagion and recovery processes. We study how the proportion of infected individuals scales with the number of contacts among them. Rather unexpectedly, we discover that the result of highly connected individuals at the highest risk of infection is not as general as commonly believed. In infections that confer permanent immunity to individuals of vital populations (SIR processes), the nodes that are most likely to be infected are those with intermediate degrees. Our age-degree structured models allow such findings to be deeply analyzed and interpreted, and they may aid in the development of effective prevention policies.

MeSH terms

  • Age Factors
  • Communicable Diseases / epidemiology*
  • Computer Simulation
  • Disease Susceptibility
  • Humans
  • Models, Biological*