Transcriptome analysis of hen preadipocytes treated with an adipogenic cocktail (DMIOA) with or without 20(S)-hydroxylcholesterol

BMC Genomics. 2015 Feb 18;16(1):91. doi: 10.1186/s12864-015-1231-z.

Abstract

Background: 20(S)-hydroxycholesterol (20(S)) potentially reduces adipogenesis in mammalian cells. The role of this oxysterol and molecular mechanisms underlying the adipogenesis of preadipocytes from laying hens have not been investigated. This study was conducted to 1. Analyze genes differentially expressed between preadipocytes treated with an adipogenic cocktail (DMIOA) containing 500 nM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine, 20 μg/mL insulin and 300 μM oleic acid (OA) and control cells and 2. Analyze genes differentially expressed between preadipocytes treated with DMIOA and those treated with DMIOA + 20(S) using Affymetrix GeneChip® Chicken Genome Arrays.

Results: In experiment one, where we compared the gene expression profile of non-treated (control) cells with those treated with DMIOA, out of 1,221 differentially expressed genes, 755 were over-expressed in control cells, and 466 were over-expressed in cells treated with DMIOA. In experiment two, where we compared the gene expression profile of DMIOA treated cells with those treated with DMIOA+20(S), out of 212 differentially expressed genes, 90 were over-expressed in cells treated with DMIOA, and 122 were over-expressed in those treated with DMIOA+20(S). Genes over-expressed in control cells compared to those treated with DMIOA include those involved in cell-to-cell signaling and interaction (IL6, CNN2, ITGB3), cellular assembly and organization (BMP6, IGF1, ACTB), and cell cycle (CD4, 9, 38). Genes over-expressed in DMIOA compared to control cells include those involved in cellular development (ADAM22, ADAMTS9, FIGF), lipid metabolism (FABP3, 4 and 5), and molecular transport (MAP3K8, PDK4, AGTR1). Genes over-expressed in cells treated with DMIOA compared with those treated with DMIOA+20(S) include those involved in lipid metabolism (ENPP2, DHCR7, DHCR24), molecular transport (FADS2, SLC6A2, CD36), and vitamin and mineral metabolism (BCMO1, AACS, AR). Genes over-expressed in cells treated with DMIOA+20(S) compared with those treated with DMIOA include those involved in cellular growth and proliferation (CD44, CDK6, IL1B), cellular development (ADORA2B, ATP6VOD2, TNFAIP3), and cell-to-cell signaling and interaction (VCAM1, SPON2, VLDLR).

Conclusion: We identified important adipogenic regulators and key pathways that would help to understand the molecular mechanism of the in vitro adipogenesis in laying hens and demonstrated that 20(S) is capable of suppressing DMIOA-induced adipogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3-L1 Cells
  • Adipocytes / drug effects*
  • Adipogenesis / drug effects
  • Adipogenesis / genetics*
  • Animals
  • Cell Differentiation / drug effects*
  • Chickens
  • Cholesterol / administration & dosage
  • Gene Expression Profiling*
  • Gene Expression Regulation, Developmental / drug effects
  • Insulin / administration & dosage
  • Lipid Metabolism / drug effects
  • Mice
  • Signal Transduction

Substances

  • Insulin
  • Cholesterol