Kinetics of the Self Reaction of Cyclopentadienyl Radicals

J Phys Chem A. 2015 Jul 16;119(28):7418-29. doi: 10.1021/acs.jpca.5b00644. Epub 2015 Mar 24.

Abstract

The kinetics of the self-reaction of cyclopentadienyl radicals (c-C5H5) was studied by laser photolysis/photoionization mass spectroscopy. Overall rate constants were obtained in direct real-time experiments in the temperature region 304-600 K and at bath gas densities of (3.00-12.0) × 10(16) molecules cm(-3). The room-temperature value of the rate constant, (3.98 ± 0.41) × 10(-10) cm(3) molecule(-1) s(-1), is significantly higher than the rate constants for most hydrocarbon radical-radical reactions and coincides with the estimated collision rate. The observed overall c-C5H5 + c-C5H5 rate constant demonstrates an unprecedented strong negative temperature dependence: k1 = 2.9 × 10(-12) exp(+1489 K/T) cm(3) molecule(-1) s(-1), with estimated uncertainty increasing with temperature, from 13% at 304 to 32% at 600 K. Formation of C10H10 as the primary product of cyclopentadienyl self-reaction was observed. In additional experiments performed at the temperature of 800 K, formation of C10H10, C10H9, and C10H8 was observed. Final product analysis by gas chromatography/mass spectrometry detected two isomers of C10H8 at 800 K: naphthalene (major) and azulene (minor).