Percolating transport and the conductive scaling relationship in lamellar block copolymers under confinement

ACS Nano. 2015 Mar 24;9(3):2465-76. doi: 10.1021/acsnano.5b01321. Epub 2015 Mar 13.

Abstract

The topology and transport behavior of the lamellar morphology self-assembled by block copolymers in thin films are shown to depend on the length scale over which they are characterized and can be described by percolation in a network under confinement. Gold nanowires replicating the lamellar morphology were fabricated via self-assembled poly(styrene-block-methyl methacrylate) thin films and a lift-off pattern transfer process. The lamellar morphology exhibits long-range connectivity (macroscopic scale); however, characterization of electrical conduction over confined areas (5-500 μm) demonstrates a discrete probability of disconnection that arises due to the underlying network structure and a lack of self-similarity at these microscale dimensions. In particular, it is proved that the lamellar network morphology under confinement has a conductance that is nonlinear with channel length or width. The experimental results are discussed in terms of percolation theory, and a simple, two-dimensional Monte Carlo model is shown to predict the key trends in the network topology and conductance in lamellar block copolymers, including the dependencies on composition, extent of spatial confinement, and confinement geometry. These results highlight the need to exquisitely control or engineer the self-assembled nanostructured pathways formed by block copolymers to ensure consistent device performance for any application that depends upon percolating material, ionic, or electrical transport, especially when confined in any dimension. It is also concluded that the two most promising approaches for enhancing conductivity in block copolymer materials may be achieved either at the limits of (1) perfectly oriented, single-crystalline or (2) high defect density, polycrystalline microphase separated morphologies and that nanostructured systems with intermediate defect densities would be detrimental to transport in confined systems.

Keywords: block copolymers; lamellae; network structure; percolation; thin film; topology; transport.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.