Evaluation of plutonium(IV) extraction rate between nitric acid and tri-n-butylphosphate solution using a glass chip microchannel

J Sep Sci. 2015 May;38(10):1807-12. doi: 10.1002/jssc.201401315. Epub 2015 Apr 2.

Abstract

Extraction of Pu(IV) with tri-n-butylphosphate is performed using a glass chip microchannel to evaluate the extraction rate. Two-phase flow forms in the microchannel by introducing a solution of Pu(IV) and tri-n-butylphosphate with flow rates above 5 μL/min. The Pu(IV) extraction reaction proceeds at the interface between the two phases. To evaluate the extraction rate, the contact time between the two phases is varied from 0.48 to 4.8 s by changing the confluent length of the microchannel and the flow rate. The Pu concentration of each phase collected from the microchannel is measured with an alpha liquid scintillation counter, and the contact time dependence of Pu(IV) extraction is obtained. An extraction model based on diffusion in the microchannel and the reaction at the interface is proposed and applied to determine the extraction rate. The extraction process is assumed to follow pseudo-first-order kinetics, and the extraction rate constant of Pu(IV) is determined to be 1.5 × 10(-2) cm/s. The investigation demonstrates that a microfluidic device can be a new tool to determine Pu(IV) extraction rates.

Keywords: Extraction rates; Glass chips; Microchannels; Plutonium; Solvent extraction.