Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization

Chemistry. 2015 May 4;21(19):7012-5. doi: 10.1002/chem.201406664. Epub 2015 Mar 6.

Abstract

A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3-butadiene and 1-butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3-butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed.

Keywords: NMR spectroscopy; gold; heterogeneous catalysis; hydrogenation; signal enhancement.