Coupled within-host and between-host dynamics and evolution of virulence

Math Biosci. 2015 Dec;270(Pt B):204-12. doi: 10.1016/j.mbs.2015.02.012. Epub 2015 Mar 4.

Abstract

Mathematical models coupling within- and between-host dynamics can be helpful for deriving trade-off functions between disease transmission and virulence at the population level. Such functions have been used to study the evolution of virulence and to explore the possibility of a conflict between natural selection at individual and population levels for directly transmitted diseases (Gilchrist and Coombs, 2006). In this paper, a new coupled model for environmentally-driven diseases is analyzed to study similar biological questions. It extends the model in Cen et al. (2014) and Feng et al. (2013) by including the disease-induced host mortality. It is shown that the extended model exhibits similar dynamical behaviors including the possible occurrence of a backward bifurcation. It is also shown that the within-host pathogen load and the disease prevalence at the positive stable equilibrium are increasing functions of the within- and between-host reproduction numbers (Rw0 and Rb0), respectively. Optimal parasite strategies will maximize these reproduction numbers at the two levels, and a conflict may exist between the two levels. Our results highlight the role of inter-dependence of variables and parameters in the fast and slow systems for persistence of infections and evolution of pathogens in an environmentally-driven disease. Our results also demonstrate the importance of incorporating explicit links of the within- and between-host dynamics into the computation of threshold conditions for disease control.

Keywords: Backward bifurcation; Between-host dynamics; Coupled systems; Evolution of virulence; Within-host dynamics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biological Evolution*
  • Host-Pathogen Interactions*
  • Models, Theoretical*
  • Virulence*