Effective bond orders from two-step spin-orbit coupling approaches: the I2, At2, IO(+), and AtO(+) case studies

J Chem Phys. 2015 Mar 7;142(9):094305. doi: 10.1063/1.4913738.

Abstract

The nature of chemical bonds in heavy main-group diatomics is discussed from the viewpoint of effective bond orders, which are computed from spin-orbit wave functions resulting from spin-orbit configuration interaction calculations. The reliability of the relativistic correlated wave functions obtained in such two-step spin-orbit coupling frameworks is assessed by benchmark studies of the spectroscopic constants with respect to either experimental data, or state-of-the-art fully relativistic correlated calculations. The I2, At2, IO(+), and AtO(+) species are considered, and differences and similarities between the astatine and iodine elements are highlighted. In particular, we demonstrate that spin-orbit coupling weakens the covalent character of the bond in At2 even more than electron correlation, making the consideration of spin-orbit coupling compulsory for discussing chemical bonding in heavy (6p) main group element systems.