Identification and characterization of multidrug-resistant Salmonella enterica serotype Albert isolates in the United States

Antimicrob Agents Chemother. 2015 May;59(5):2774-9. doi: 10.1128/AAC.05183-14. Epub 2015 Mar 2.

Abstract

Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment of invasive salmonellosis is critical. The primary antimicrobial treatment options include fluoroquinolones or extended-spectrum cephalosporins, and resistance to these antimicrobial drugs may complicate treatment. At present, S. enterica is composed of more than 2,600 unique serotypes, which vary greatly in geographic prevalence, ecological niche, and the ability to cause human disease, and it is important to understand and mitigate the source of human infection, particularly when antimicrobial resistance is found. In this study, we identified and characterized 19 S. enterica serotype Albert isolates collected from food animals, retail meat, and humans in the United States during 2005 to 2013. All five isolates from nonhuman sources were obtained from turkeys or ground turkey, and epidemiologic data suggest poultry consumption or live-poultry exposure as the probable source of infection. S. enterica serotype Albert also appears to be geographically localized to the midwestern United States. All 19 isolates displayed multidrug resistance, including decreased susceptibility to fluoroquinolones and resistance to extended-spectrum cephalosporins. Turkeys are a likely source of multidrug-resistant S. enterica serotype Albert, and circulation of resistance plasmids, as opposed to the expansion of a single resistant strain, is playing a role. More work is needed to understand why these resistance plasmids spread and how their presence and the serotype they reside in contribute to human disease.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Drug Resistance, Multiple, Bacterial* / genetics
  • Humans
  • Midwestern United States
  • Phylogeny
  • Salmonella enterica / classification
  • Salmonella enterica / drug effects
  • Salmonella enterica / genetics*
  • Salmonella enterica / isolation & purification
  • Serogroup

Substances

  • Anti-Bacterial Agents