Comparison of Automated Brain Volume Measures obtained with NeuroQuant and FreeSurfer

J Neuroimaging. 2015 Sep-Oct;25(5):721-7. doi: 10.1111/jon.12229. Epub 2015 Feb 26.

Abstract

Purpose: To examine intermethod reliabilities and differences between FreeSurfer and the FDA-cleared congener, NeuroQuant, both fully automated methods for structural brain MRI measurements.

Materials and methods: MRI scans from 20 normal control subjects, 20 Alzheimer's disease patients, and 20 mild traumatically brain-injured patients were analyzed with NeuroQuant and with FreeSurfer. Intermethod reliability was evaluated.

Results: Pairwise correlation coefficients, intraclass correlation coefficients, and effect size differences were computed. NeuroQuant versus FreeSurfer measures showed excellent to good intermethod reliability for the 21 regions evaluated (r: .63 to .99/ICC: .62 to .99/ES: -.33 to 2.08) except for the pallidum (r/ICC/ES = .31/.29/-2.2) and cerebellar white matter (r/ICC/ES = .31/.31/.08). Volumes reported by NeuroQuant were generally larger than those reported by FreeSurfer with the whole brain parenchyma volume reported by NeuroQuant 6.50% larger than the volume reported by FreeSurfer. There was no systematic difference in results between the 3 subgroups.

Conclusion: NeuroQuant and FreeSurfer showed good to excellent intermethod reliability in volumetric measurements for all brain regions examined with the only exceptions being the pallidum and cerebellar white matter. This finding was robust for normal individuals, patients with Alzheimer's disease, and patients with mild traumatic brain injury.

Keywords: Brain morphometry; freesurfer; neuroquant®; pallidum; reliability.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Algorithms
  • Alzheimer Disease / pathology*
  • Brain / pathology*
  • Female
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Organ Size
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Software*