Spatial distribution patterns of molybdenum (Mo) concentrations in potable groundwater in Northern Jordan

Environ Monit Assess. 2015 Mar;187(3):148. doi: 10.1007/s10661-015-4264-5. Epub 2015 Feb 27.

Abstract

Two hundred and three groundwater samples were collected during March 2011 to June 2012 from the B2/A7 aquifer water supply wells of northern part of Jordan. The physicochemical properties were analyzed in situ for the major cations, anions, while certain heavy metals were analyzed in the laboratory. Some oilshale rock samples were geochemically analyzed. The Upper Cretaceous aquifer (B2/A7) is used as water supply for most of the communities in the study area. It consists of limestone, marly limestone, bedded chert, and minor phosphorite. Hydrochemical results from the B2/A7 aquifer indicate two main water types: alkaline-earth water (CaHCO3) and alkaline-earth water with high alkaline component (NaHCO3 (-), Na2SO4). Standard column leaching experiments on oilshale rock samples and the R-mode factor analysis suggest that the sources for elevated Mo concentrations in the groundwater of certain parts of northern Jordan are attributed to water-oilshale interaction, mobility of Mo down to the groundwater and the extensive use of fertilizers within these areas. Molybdenum (Mo) concentrations in the groundwater water range from 0.07 to 1.44 mg/L with an average value of 98 μg/L. They are found to exceed the JISM and WHO guidelines in two areas in northern part of Jordan. Spatial distribution of Mo, using ordinary kriging techniques and the resulting map, shows high Mo concentration in the northwestern part near Wadi Al Arab area reaching concentrations of 650 μg/L and in the southeastern corner of the investigated area, south of Al Ukaydir village, with an average concentration of 468 μg/L. Both areas are characterized by extensive oilshale exposures with average concentration of 11.7 mg/kg Mo and intensive agricultural activities. These two areas represent approximately 33 % of the groundwater in the northern part of Jordan. Mobility of Mo to the groundwater in northern part of Jordan is attributed to two mechanisms. First, there is reductive dissolution of Fe-oxide, which releases substantial adsorbed Mo concentrations. Secondly, there is oxidation of Mo into dissolved forms in sulfide organic-rich system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Agriculture
  • Environmental Monitoring*
  • Fertilizers / analysis
  • Groundwater / chemistry*
  • Jordan
  • Metals, Heavy / analysis
  • Molybdenum / analysis*
  • Water Pollutants, Chemical / analysis*
  • Water Supply / analysis

Substances

  • Fertilizers
  • Metals, Heavy
  • Water Pollutants, Chemical
  • Molybdenum