Top-down MALDI-in-source decay-FTICR mass spectrometry of isotopically resolved proteins

Anal Chem. 2015 Mar 17;87(6):3429-37. doi: 10.1021/ac504708y. Epub 2015 Mar 5.

Abstract

An accurate mass measurement of a known protein provides information on potential amino acid deletions and post-translational modifications. Although this field is dominated by strategies based on electrospray ionization, mass spectrometry (MS) methods using matrix-assisted laser desorption/ionization (MALDI) have the advantage of yielding predominantly singly charged precursor ions, thus avoiding peak overlap from different charge states of multiple species. Such MALDI-MS methods require mass measurement at ultrahigh resolution, which is provided by Fourier transform ion cyclotron resonance (FTICR) mass analyzers. Recently, using a MALDI-FTICR-MS platform equipped with a 15 T magnet, we reported on the mass analysis of intact human serum peptides and small proteins with isotopic resolution up to ∼15 kDa and identified new proteoforms from an accurate measurement of mass distances. In the current study, we have used this FTICR system after an upgrade with a novel dynamically harmonized ICR cell, i.e., ParaCell, for mapping isotopically resolved intact proteins up to about 17 kDa and performed top-down MALDI in-source decay (ISD) analysis. Standard proteins myoglobin (m/z-value 16,950) and ribonuclease B (m/z-value 14,900) were measured with resolving powers of 62,000 and 61,000, respectively. Furthermore, it will be shown that (singly charged) MALDI-ISD fragment ions can be measured at isotopic resolution up to m/z-value 12,000 (e.g., resolving power 39,000 at m/z-value 12,000) providing more reliable identifications. Moreover, examples are presented of pseudo-MS(3) experiments on ISD fragment ions from RNase B by collisional-induced dissociation (CID).

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cattle
  • Cyclotrons*
  • Fourier Analysis*
  • Isotopes
  • Molecular Sequence Data
  • Myoglobin / chemistry*
  • Ribonucleases / chemistry*
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization / instrumentation
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization / methods*

Substances

  • Isotopes
  • Myoglobin
  • Ribonucleases
  • ribonuclease B