Modulation of Amide Bond Rotamers in 5-Acyl-6,7-dihydrothieno[3,2-c]pyridines

J Org Chem. 2015 May 1;80(9):4370-7. doi: 10.1021/acs.joc.5b00205. Epub 2015 Apr 9.

Abstract

2-Substituted N-acyl-piperidine is a widespread and important structural motif, found in approximately 500 currently available structures, and present in nearly 30 pharmaceutically active compounds. Restricted rotation of the acyl substituent in such molecules can give rise to two distinct chemical environments. Here we demonstrate, using NMR studies and density functional theory modeling of the lowest energy structures of 5-acyl-6,7-dihydrothieno[3,2-c]pyridine derivatives, that the amide E:Z equilibrium is affected by non-covalent interactions between the amide oxygen and adjacent aromatic protons. Structural predictions were used to design molecules that promote either the E- or Z-amide conformation, enabling preparation of compounds with a tailored conformational ratio, as proven by NMR studies. Analysis of the available X-ray data of a variety of published N-acyl-piperidine-containing compounds further indicates that these molecules are also clustered in the two observed conformations. This finding emphasizes that directed conformational isomerism has significant implications for the design of both small molecules and larger amide-containing molecular architectures.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amides / chemistry*
  • Magnetic Resonance Spectroscopy
  • Molecular Structure
  • Pyridines / chemistry*
  • Quantum Theory
  • Thiophenes / chemistry*

Substances

  • Amides
  • Pyridines
  • Thiophenes