Formation of furan along with HO₂ during the OH-initiated oxidation of 2,5-DHF and 2,3-DHF: an experimental and computational study

J Phys Chem A. 2015 Mar 26;119(12):2793-801. doi: 10.1021/jp5122454. Epub 2015 Mar 6.

Abstract

Experimental characterization of products during OH-initiated oxidation of dihydrofurans (DHF) confirms the formation of furan accompanied by the formation of HO2 to be a significant channel in 2,5-DHF (21 ± 3%), whereas it is absent in 2,3-DHF. Theoretical investigations on the reaction of OH with these molecules are carried out to understand this difference. All possible channels of reaction are studied at M06-2X level with 6-311G* basis set, and the stationary points on the potential energy surface are optimized. The overall rate coefficients calculated using conventional TST with Wigner tunneling correction for 2,5-DHF and 2,3-DHF are 2.25 × 10(-11) and 4.13 × 10(-10) cm(3) molecule(-1) s(-1), respectively, in the same range as the previously determined experimental values. The branching ratios of different channels were estimated using the computed rate coefficients. The abstraction of H atom, leading to dihydrofuranyl radical, is found to be a significant probability, equally important as the addition of OH to the double bond in the case of 2,5-DHF. However, this probability is very small in the case of 2,3-DHF because the rate coefficient of the addition reaction is more than 10 times that of the abstraction reaction. This explains the conspicuous absence of furan among the products of the reaction of OH with 2,3-DHF. The calculations also indicate that the abstraction reaction, and hence furan formation, may become significant for OH-initiated oxidation of 2,3-DHF at temperatures relevant to combustion.