Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria

Biochim Biophys Acta. 2015 Oct;1853(10 Pt B):2791-6. doi: 10.1016/j.bbamcr.2015.02.009. Epub 2015 Feb 18.

Abstract

PINK1 and Parkin are gene products that cause genetic recessive Parkinsonism. PINK1 is a protein kinase and Parkin is a ubiquitin ligase (E3) that links ubiquitin to a substrate. Importantly, under steady state conditions, the enzymatic activity of Parkin is completely suppressed, but is activated when mitochondria become abnormal. In 2013 and 2014, biochemical and structure-function analyses revealed a number of critical mechanistic insights. First, Parkin is a self-inhibitory E3 that suppresses its E3 activity via intramolecular interactions. Second, in response to a decrease in mitochondrial membrane potential, PINK1 phosphorylates Ser65 in both the Parkin ubiquitin-like domain and ubiquitin itself. These phosphorylation events cooperate to relieve the Parkin autoinhibition. Third, activated Parkin forms a ubiquitin-thioester bond at Cys431 to produce a reaction intermediate that catalyzes ubiquitylation of substrates on damaged mitochondria. While the molecular mechanism regulating Parkin enzymatic activity has largely eluded clarification, a complete picture is now emerging.

Keywords: Activation; E3; PINK1; Parkin; Ubiquitin.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Humans
  • Mitochondria / genetics
  • Mitochondria / metabolism*
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism*
  • Protein Kinases / genetics
  • Protein Kinases / metabolism*
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism*
  • Ubiquitination / physiology*

Substances

  • Mitochondrial Proteins
  • Ubiquitin-Protein Ligases
  • parkin protein
  • Protein Kinases
  • PTEN-induced putative kinase