Solvation-induced helicity inversion of pseudotetrahedral chiral copper(II) complexes

Inorg Chem. 2015 Mar 2;54(5):2193-203. doi: 10.1021/ic502661u. Epub 2015 Feb 19.

Abstract

The helicity of four-coordinated nonplanar complexes is strongly correlated to the chirality of the ligand. However, the stereochemical induction of either the Δ- or the Λ-configuration at the metal ion is also modulated by environmental factors that change the conformational distribution of ligand rotamers. Calculation of the potential energy surface of bis{(R)-N-(1-(4-X-phenyl)ethyl)salicylaldiminato-κ(2)N,O}copper(II) with X = Cl at the density functional theory level showed a clear dependence of the helicity-determining angle θ between the two coordination planes on the relative population of different ligand conformers. The influence of different substituents (X = H, Cl, Br, and OCH3) on complex helicity was studied by determination of the absolute configuration at the metal ion in complexes with either (R)- or (S)-configured ligands. X-ray single-crystal analysis showed that (R)-configured ligands with H, Cl, Br induce Δ, while OCH3-substituted (R)-configured ligands induce Λ in the solid state. According to vibrational circular dichroism and electronic circular dichroism studies in solution, however, all tested complexes with (R)-ligands exhibited a propensity for Δ, with high diastereomeric ratio for X = Cl and X = Br and moderate diastereomeric ratio for X = H and X = OCH3 substituted ligands. Therefore, solvation of copper complexes with X = OCH3 goes along with helicity inversion. This solid-state versus solution study demonstrates that it is not sufficient to determine the chiral-at-metal configuration of a compound by X-ray crystallography alone, because the solution structure can be different. This is particularly important for the use of chiral-at-metal complexes as catalysts in stereoselective synthesis.

MeSH terms

  • Copper / chemistry*
  • Crystallography, X-Ray
  • Models, Molecular
  • Molecular Conformation
  • Organometallic Compounds / chemical synthesis
  • Organometallic Compounds / chemistry*
  • Quantum Theory
  • Solubility

Substances

  • Organometallic Compounds
  • Copper