Endoscopic endonasal atlantoaxial transarticular screw fixation technique: an anatomical feasibility and biomechanical study

J Neurosurg Spine. 2015 May;22(5):470-7. doi: 10.3171/2014.10.SPINE14374. Epub 2015 Feb 13.

Abstract

OBJECT The primary disadvantage of the posterior cervical approach for atlantoaxial stabilization after odontoidectomy is that it is conducted as a second-stage procedure. The goal of the current study is to assess the surgical feasibility and biomechanical performance of an endoscopic endonasal surgical technique for C1-2 fixation that may eliminate the need for posterior fixation after odontoidectomy. METHODS The first step of the study was to perform endoscopic endonasal anatomical dissections of the craniovertebral junction in 10 silicone-injected fixed cadaveric heads to identify relevant anatomical landmarks. The second step was to perform a quantitative analysis using customized software in 10 reconstructed adult cervical spine CT scans to identify the optimal screw entry point and trajectory. The third step was biomechanical flexibility testing of the construct and comparison with the posterior C1-2 transarticular fixation in 14 human cadaveric specimens. RESULTS Adequate surgical exposure and identification of the key anatomical landmarks, such as C1-2 lateral masses, the C-1 anterior arch, and the odontoid process, were provided by the endonasal endoscopic approach in all specimens. Radiological analysis of anatomical detail suggested that the optimal screw entry point was on the anterior aspect of the C-1 lateral mass near the midpoint, and the screw trajectory was inferiorly and slightly laterally directed. The custommade angled instrumentation was crucial for screw placement. Biomechanical analysis suggested that anterior C1-2 fixation compared favorably to posterior fixation by limiting flexion-extension, axial rotation, and lateral bending (p > 0.3). CONCLUSIONS This is the first study that demonstrates the feasibility of an endoscopic endonasal technique for C1-2 fusion. This novel technique may have clinical utility by eliminating the need for a second-stage posterior fixation operation in certain patients undergoing odontoidectomy.

Keywords: AP = anteroposterior; CVJ = craniovertebral junction; ROM = range of motion; VA = vertebral artery; atlantoaxial fusion; biomechanics; cervical; craniovertebral junction; endoscopy; odontoidectomy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Atlanto-Axial Joint / diagnostic imaging
  • Atlanto-Axial Joint / surgery*
  • Biomechanical Phenomena
  • Bone Screws*
  • Cadaver
  • Endoscopy*
  • Feasibility Studies
  • Female
  • Humans
  • Male
  • Middle Aged
  • Nose
  • Radiographic Image Interpretation, Computer-Assisted
  • Software
  • Spinal Fusion / methods*
  • Tomography, X-Ray Computed