Intraoperative brain cancer detection with Raman spectroscopy in humans

Sci Transl Med. 2015 Feb 11;7(274):274ra19. doi: 10.1126/scitranslmed.aaa2384.

Abstract

Cancers are often impossible to visually distinguish from normal tissue. This is critical for brain cancer where residual invasive cancer cells frequently remain after surgery, leading to disease recurrence and a negative impact on overall survival. No preoperative or intraoperative technology exists to identify all cancer cells that have invaded normal brain. To address this problem, we developed a handheld contact Raman spectroscopy probe technique for live, local detection of cancer cells in the human brain. Using this probe intraoperatively, we were able to accurately differentiate normal brain from dense cancer and normal brain invaded by cancer cells, with a sensitivity of 93% and a specificity of 91%. This Raman-based probe enabled detection of the previously undetectable diffusely invasive brain cancer cells at cellular resolution in patients with grade 2 to 4 gliomas. This intraoperative technology may therefore be able to classify cell populations in real time, making it an ideal guide for surgical resection and decision-making.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Brain Neoplasms / diagnosis*
  • Brain Neoplasms / surgery*
  • Female
  • Humans
  • Intraoperative Period
  • Male
  • Middle Aged
  • Sensitivity and Specificity
  • Spectrum Analysis / methods*