Exciton dissociation at donor-acceptor heterojunctions: dynamics using the collective effective mode representation of the spin-boson model

J Chem Phys. 2014 Jan 28;140(4):044104. doi: 10.1063/1.4861853.

Abstract

Following the recent quantum dynamics investigation of the charge transfer at an oligothiophene-fullerene heterojunction by the multi-configuration time dependent Hartree method [H. Tamura, R. Martinazzo, M. Ruckenbauer and I. Burghardt, J. Chem. Phys. 137, 22A540 (2012)], we revisit the transfer process by a perturbative non-Markovian master equation treated by the time local auxiliary density matrix approach. We compare the efficiency of the spin-boson model calibrated by quantum chemistry with the effective mode representation. A collective mode is extracted from the spin-boson spectral density. It is weakly coupled to a residual bath of vibrational modes, allowing second-order dynamics. The electron transfer is analyzed for a sampling of inter-fragment distances showing the fine interplay of the electronic coupling and energy gap on the relaxation. The electronic coherence, expected to play a role in the process, is preserved during about 200 fs.