Effects of pulsed 2.856 GHz microwave exposure on BM-MSCs isolated from C57BL/6 mice

PLoS One. 2015 Feb 6;10(2):e0117550. doi: 10.1371/journal.pone.0117550. eCollection 2015.

Abstract

The increasing use of microwave devices over recent years has meant the bioeffects of microwave exposure have been widely investigated and reported. However the exact biological fate of bone marrow MSCs (BM-MSCs) after microwave radiation remains unknown. In this study, the potential cytotoxicity on MSC proliferation, apoptosis, cell cycle, and in vitro differentiation were assayed following 2.856 GHz microwave exposure at a specific absorption rate (SAR) of 4 W/kg. Importantly, our findings indicated no significant changes in cell viability, cell division and apoptosis after microwave treatment. Furthermore, we detected no significant effects on the differentiation ability of these cells in vitro, with the exception of reduction in mRNA expression levels of osteopontin (OPN) and osteocalcin (OCN). These findings suggest that microwave treatment at a SAR of 4 W/kg has undefined adverse effects on BM-MSCs. However, the reduced-expression of proteins related to osteogenic differentiation suggests that microwave can the influence at the mRNA expression genetic level.

MeSH terms

  • Animals
  • Apoptosis / radiation effects
  • Bone Marrow Cells / cytology*
  • Bone Marrow Cells / metabolism
  • Cell Differentiation / radiation effects
  • Cell Proliferation / radiation effects
  • Cell Survival / radiation effects
  • Cells, Cultured
  • Gamma Rays
  • Male
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / metabolism
  • Mesenchymal Stem Cells / radiation effects*
  • Mice
  • Mice, Inbred C57BL
  • Microwaves*
  • Osteocalcin / genetics
  • Osteocalcin / metabolism
  • Osteopontin / genetics
  • Osteopontin / metabolism
  • RNA, Messenger / metabolism
  • Temperature

Substances

  • RNA, Messenger
  • Osteocalcin
  • Osteopontin

Grants and funding

The authors have no support or funding to report.