Low-Mg(2+) treatment increases sensitivity of voltage-gated Na(+) channels to Ca(2+)/calmodulin-mediated modulation in cultured hippocampal neurons

Am J Physiol Cell Physiol. 2015 Apr 15;308(8):C594-605. doi: 10.1152/ajpcell.00174.2014. Epub 2015 Feb 4.

Abstract

Culture of hippocampal neurons in low-Mg(2+) medium (low-Mg(2+) neurons) results in induction of continuous seizure activity. However, the underlying mechanism of the contribution of low Mg(2+) to hyperexcitability of neurons has not been clarified. Our data, obtained using the patch-clamp technique, show that voltage-gated Na(+) channel (VGSC) activity, which is associated with a persistent, noninactivating Na(+) current (INa,P), was modulated by calmodulin (CaM) in a concentration-dependent manner in normal and low-Mg(2+) neurons, but the channel activity was more sensitive to Ca(2+)/CaM regulation in low-Mg(2+) than normal neurons. The increased sensitivity of VGSCs in low-Mg(2+) neurons was partially retained when CaM12 and CaM34, CaM mutants with disabled binding sites in the N or C lobe, were used but was diminished when CaM1234, a CaM mutant in which all four Ca(2+) sites are disabled, was used, indicating that functional Ca(2+)-binding sites from either lobe of CaM are required for modulation of VGSCs in low-Mg(2+) neurons. Furthermore, the number of neurons exhibiting colocalization of CaM with the VGSC subtypes NaV1.1, NaV1.2, and NaV1.3 was significantly higher in low- Mg(2+) than normal neurons, as shown by immunofluorescence. Our main finding is that low-Mg(2+) treatment increases sensitivity of VGSCs to Ca(2+)/CaM-mediated regulation. Our data reveal that CaM, as a core regulating factor, connects the functional roles of the three main intracellular ions, Na(+), Ca(2+), and Mg(2+), by modulating VGSCs and provides a possible explanation for the seizure discharge observed in low-Mg(2+) neurons.

Keywords: calcium; calmodulin; magnesium; voltage-gated sodium channels.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Brain Waves
  • Calcium / pharmacology*
  • Calmodulin / pharmacology*
  • Cell Membrane / metabolism
  • Cells, Cultured
  • Hippocampus / cytology*
  • Humans
  • Magnesium / pharmacology*
  • Patch-Clamp Techniques
  • Seizures / metabolism*
  • Tetrodotoxin / pharmacology
  • Voltage-Gated Sodium Channel Blockers / pharmacology
  • Voltage-Gated Sodium Channels / metabolism*

Substances

  • Calmodulin
  • Voltage-Gated Sodium Channel Blockers
  • Voltage-Gated Sodium Channels
  • Tetrodotoxin
  • Adenosine Triphosphate
  • Magnesium
  • Calcium