Serum sulfatide abnormality is associated with increased oxidative stress in hemodialysis patients

Hemodial Int. 2015 Jul;19(3):429-38. doi: 10.1111/hdi.12270. Epub 2015 Feb 3.

Abstract

Sulfatides are major glycosphingolipids of lipoproteins that influence atherosclerosis and blood coagulation. Our previous cross-sectional study of hemodialysis patients showed that serum sulfatide levels decreased markedly with increasing duration of hemodialysis treatment, which may contribute to the development of cardiovascular disease. However, this past study could not demonstrate the time-dependent change in serum sulfatide levels in each patient, and the underlying mechanism is unknown. To confirm the time-dependent aggravation of serum sulfatide abnormality, 95 stable hemodialysis outpatients were followed up for 3 years. To show the underlying mechanisms, we statistically analyzed correlations between serum sulfatide levels and clinical factors, including an oxidative stress marker, malondialdehyde. Serum sulfatides were quantified by mass spectrometry after conversion to lysosulfatides. Malondialdehyde was measured using a colorimetric assay. The results showed a time-dependent decrease in serum sulfatide levels associated with increased malondialdehyde levels, although the absolute level of serum malondialdehyde does not determine the baseline level of serum sulfatides. Multiple linear regression analysis showed a significant correlation only between the time-dependent change in serum sulfatide levels and the time-dependent change in serum malondialdehyde levels. This study demonstrated, for the first time, a time-dependent aggravation of serum sulfatide abnormality in hemodialysis patients, as well as the potential relationship between serum sulfatide abnormality and increasing oxidative stress. These findings suggest that oxidative stress might be an aggravating factor in serum sulfatide abnormality. As continuation of hemodialysis treatment hardly improves abnormal serum sulfatide levels or increased oxidative stress, development of novel therapeutic strategies may be important.

Keywords: Cardiovascular disease; hemodialysis; malondialdehyde; oxidative stress; serum sulfatide level.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Biomarkers
  • Cardiovascular Diseases / blood*
  • Cross-Sectional Studies
  • Female
  • Humans
  • Male
  • Middle Aged
  • Oxidative Stress
  • Renal Dialysis / adverse effects*
  • Renal Dialysis / methods
  • Sulfoglycosphingolipids / blood*

Substances

  • Biomarkers
  • Sulfoglycosphingolipids