Metabolic engineering of higher plants and algae for isoprenoid production

Adv Biochem Eng Biotechnol. 2015:148:161-99. doi: 10.1007/10_2014_290.

Abstract

Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Biological Products / chemistry
  • Biomass
  • Biotechnology / methods
  • Carbon / chemistry
  • Chemistry, Pharmaceutical / methods
  • Chlamydomonas / metabolism*
  • Drug Design
  • Metabolic Engineering / methods
  • Plant Extracts / chemistry
  • Plant Leaves / metabolism
  • Plant Proteins / chemistry*
  • Plant Roots / metabolism
  • Plants / metabolism*
  • Seeds / metabolism
  • Terpenes / chemistry*
  • Transcription Factors / metabolism

Substances

  • Biological Products
  • Plant Extracts
  • Plant Proteins
  • Terpenes
  • Transcription Factors
  • Carbon