Interfacial water properties in the presence of surfactants

Langmuir. 2015 Feb 24;31(7):2084-94. doi: 10.1021/la504388r. Epub 2015 Feb 9.

Abstract

Water, because of its fundamental role in biology, geology, and many industrial applications and its anomalous behavior compared to that of simple fluids, continues to fascinate and attract extensive scientific interest. Building on previous studies of water in contact with different surfaces, in this study, we report results obtained from molecular dynamics simulations of water near hydrophilic and hydrophobic interfaces in the presence of nonionic and ionic amphiphilic molecules, hexaethylene glycol monododecyl ether (C12E6) and sodium dodecyl sulfate (SDS). We elucidate how these surfactants affect the packing (i.e., density profiles) and orientation of interfacial water. The results highlight the interplay of both surfactant charges and the substrate charge distribution predominantly with respect to the orientation of water molecules, up to distances longer than those expected based on simulation results on flat solid surfaces. We also quantify the dynamics of interfacial water molecules by computing the residence probability for water in contact with various substrates. We compare our results to those previously obtained for interfacial water on silica and graphite and also with experimental sum-frequency vibrational spectroscopy results at the air-water interface in the presence of surfactants. Our analysis could be useful for a better understanding of interfacial water not only near solid substrates but also near self-assembled/aggregated molecules at a variety of interfaces.