Patterns of shrub expansion in Alaskan arctic river corridors suggest phase transition

Ecol Evol. 2015 Jan;5(1):87-101. doi: 10.1002/ece3.1341. Epub 2014 Dec 5.

Abstract

Recent increases in deciduous shrub cover are a primary focus of terrestrial Arctic research. This study examined the historic spatial patterns of shrub expansion on the North Slope of Alaska to determine the potential for a phase transition from tundra to shrubland. We examined the historic variability of landscape-scale tall shrub expansion patterns on nine sites within river valleys in the Brooks Range and North Slope uplands (BRNS) between the 1950s and circa 2010 by calculating percent cover (PCTCOV), patch density (PADENS), patch size variability (CVSIZE), mean nearest neighbor distance (MEDIST) and the multi-scale information fractal dimension (d I ) to assess spatial homogeneity for shrub cover. We also devised conceptual models for trends in these metrics before, during, and after a phase transition, and compared these to our results. By developing a regression equation between PCTCOV and d I and using universal critical d I values, we derived the PCTCOV required for a phase transition to occur. All nine sites exhibited increases in PCTCOV. Five of the nine sites exhibited an increase in PADENS, seven exhibited an increase in CVSIZE, and five exhibited a decrease in MEDIST. The d I values for each site exceeded the requirements necessary for a phase transition. Although fine-scale heterogeneity is still present, landscape-scale patterns suggest our study areas are either currently in a state of phase transition from tundra to shrubland or are progressing towards spatial homogeneity for shrubland. Our results indicate that the shrub tundra in the river valleys of the north slope of Alaska has reached a tipping point. If climate trends observed in recent decades continue, the shrub tundra will continue towards homogeneity with regard to the cover of tall shrubs.

Keywords: Alaska; Arctic; landscape analysis; phase transition; shrub expansion; tundra.