Evaluation of spatial and functional roughness parameters on air-abraded zirconia as a function of particle type and deposition pressure

J Adhes Dent. 2015 Feb;17(1):77-80. doi: 10.3290/j.jad.a33503.

Abstract

Purpose: This study evaluated the spatial and functional roughness parameters on air-abraded zirconia as a function of particle type and deposition pressure.

Materials and methods: Polished zirconia blocks (Cercon, Degussa/Dentsply) (N=30) with dimensions of 5 × 4 × 4 mm3 were air abraded according to 2 factors: a) particle type - 30-μm silica-coated alumina (CoJet) or alumina particles (45 μm); b) deposition pressure (1.5, 2.5 and 4.5 bar). Roughness parameters (Sdr, Vi, Sci and Svi) were measured in an optical profilometer (Wyko NT 1100) at the center of the air-abraded area (301.3 × 229.2 μm). Two measurements were made for each parameter from each surface. The means of each group were analyzed by 2-way ANOVA followed by Tukey's adjustment test and Student's t-test (alpha = 0.05).

Results: Both the particle type (p < 0.05) and deposition pressure (p < 0.05) significantly affected the roughness parameters. Interaction terms were significant except for Sci and Svi. With the increase in pressure from 1.5 to 4.5 bar, Sdr (CoJet 1.5: 15.7 ± 0.2; CoJet 4.5: 26.6 ± 0.2; alumina 1.5: 14.7 ± 0.2; alumina 4.5: 24.4 ± 0.2) and Vi (CoJet 1.5: 0.66 ± 0.01; CoJet 4.5: 1.37 ± 0.07; alumina 1.5: 0.62 ± 0.02; alumina 4.5: 1.19 ± 0.02) parameters showed a significant increase with both alumina and CoJet particles. Mean Sci values (CoJet 1.5: 1.62 ± 0.01, CoJet 4.5: 1.49 ± 0.02; alumina 1.5: 1.6 ± 0.03; alumina 4.5: 1.42 ± 0.04) and SVi (CoJet 1.5: 0.98 ± 0.01, CoJet 4.5: 0.112 ± 0.01; alumina 1.5: 0.98 ± 0.01, alumina 4.5: 0.12 ± 0.01) decreased significantly (p < 0.05) with the increase in pressure from 1.5 to 4.5 bar. The pressure increase from 2.5 to 4.5 bar did not cause any significant difference (p > 0.05) in these parameters for either particle type.

Conclusion: Considering roughness parameters for micromechanical retention and parameters for adsorption mechanisms of adhesion, zirconia surfaces presented better morphological features when air abraded with silica-coated alumina than alumina particles at pressures higher than 1.5 bar. Particle deposition at 2.5 bar may be preferable to 4.5 bar pressure for avoiding possible deposition-related damage on zirconia, as there were no significant differences for the functional parameters.

MeSH terms

  • Air
  • Aluminum Oxide / chemistry
  • Dental Etching / methods*
  • Dental Materials / chemistry*
  • Humans
  • Particle Size
  • Pressure
  • Silicon Dioxide / chemistry
  • Surface Properties
  • Zirconium / chemistry*

Substances

  • Dental Materials
  • Silicon Dioxide
  • Zirconium
  • Aluminum Oxide
  • zirconium oxide