Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes

Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1803-8. doi: 10.1073/pnas.1424704112. Epub 2015 Jan 26.

Abstract

Biocontainment may be required in a wide variety of situations such as work with pathogens, field release applications of engineered organisms, and protection of intellectual properties. Here, we describe the control of growth of the brewer's yeast, Saccharomyces cerevisiae, using both transcriptional and recombinational "safeguard" control of essential gene function. Practical biocontainment strategies dependent on the presence of small molecules require them to be active at very low concentrations, rendering them inexpensive and difficult to detect. Histone genes were controlled by an inducible promoter and controlled by 30 nM estradiol. The stability of the engineered genes was separately regulated by the expression of a site-specific recombinase. The combined frequency of generating viable derivatives when both systems were active was below detection (<10(-10)), consistent with their orthogonal nature and the individual escape frequencies of <10(-6). Evaluation of escaper mutants suggests strategies for reducing their emergence. Transcript profiling and growth test suggest high fitness of safeguarded strains, an important characteristic for wide acceptance.

Keywords: Saccharomyces cerevisiae; biosafety; biotechnology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biotechnology / methods*
  • Containment of Biohazards / methods*
  • Gene Expression Profiling
  • Genes, Essential / genetics*
  • Genetic Engineering / methods*
  • Mutation / genetics
  • Organisms, Genetically Modified / genetics*
  • Recombinases / metabolism
  • Recombination, Genetic / genetics
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / growth & development
  • Transcription, Genetic / genetics

Substances

  • Recombinases