New insights into the complex architecture of siliceous copepod teeth

Zoology (Jena). 2015 Jun;118(3):141-6. doi: 10.1016/j.zool.2014.11.001. Epub 2015 Jan 23.

Abstract

Copepods belong to the dominant marine zooplankton taxa and play an important role in particle and energy fluxes of the marine water column. Their mandibular gnathobases possess tooth-like structures, so-called teeth. In species feeding on large proportions of diatoms these teeth often contain silica, which is very probably the result of a coevolution with the siliceous diatom frustules. Detailed knowledge of the morphology and composition of the siliceous teeth is essential for understanding their functioning and their significance in the context of feeding interactions between copepods and diatoms. Based on analyses of the gnathobases of the Antarctic copepod Rhincalanus gigas, the present study clearly shows, for the first time, that the silica in the siliceous teeth features large proportions of crystalline silica that is consistent with the mineral α-cristobalite and is doped with aluminium. The siliceous structures have internal chitinous fibre networks, which are assumed to serve as scaffolds during the silicification process. The compact siliceous teeth of R. gigas are accompanied by structures with large proportions of the elastic protein resilin, likely reducing the mechanical damage of the teeth when the copepods feed on diatoms with very stable frustules. The results indicate that the coevolution with diatom frustules has resulted in gnathobases exhibiting highly sophisticated composite structures.

Keywords: Chitin fibre network; Crystalline silica; Mandibular gnathobase; Marine copepod; Resilin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Copepoda / ultrastructure*
  • Microscopy, Electron, Scanning
  • Microscopy, Electron, Transmission
  • Silicon Dioxide
  • Tooth / ultrastructure

Substances

  • Silicon Dioxide