Marine population connectivity: reconciling large-scale dispersal and high self-retention

Am Nat. 2015 Feb;185(2):196-211. doi: 10.1086/679503. Epub 2015 Jan 13.

Abstract

Predicting connectivity patterns in systems with fluid transport requires descriptions of the spatial distribution of propagules. In contrast to research on terrestrial seed dispersal, where much attention has focused on localized physical factors affecting dispersal, studies of oceanic propagule dispersal have often emphasized the role of large-scale factors. We link these two perspectives by exploring how propagule dispersal in the ocean is influenced by the "coastal boundary layer" (CBL), a region of reduced velocities near the shoreline that might substantially modify local-scale dispersal. We used a simple simulation model to demonstrate that accounting for the CBL markedly alters transport distances, the widths of dispersal distributions, and the fraction of larvae retained near their sites of origin (self-retention). Median dispersal distances were up to 59% shorter in simulations with a CBL than in those without. Self-retention of larvae increased by up to 3 orders of magnitude in the presence of CBLs, but only minor changes arose in the long-distance tails of the distributions, resulting in asymmetric, non-Gaussian kernels analogous to those quantified for terrestrial seed dispersal. Because successfully settling larvae are commonly those that remain close to shore and interact with the CBL, ignoring this pervasive oceanographic feature will substantially alter predictions of population self-persistence, estimates of connectivity, and outcomes of metapopulation analyses.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Distribution*
  • Animals
  • Aquatic Organisms*
  • Ecosystem*
  • Population Dynamics