Silicon phthalocyanine covalently functionalized N-doped ultrasmall reduced graphene oxide decorated with Pt nanoparticles for hydrogen evolution from water

ACS Appl Mater Interfaces. 2015 Feb 18;7(6):3732-41. doi: 10.1021/am508476d. Epub 2015 Feb 4.

Abstract

To improve the photocatalytic activity of graphene-based catalysts, silicon phthalocyanine (SiPc) covalently functionalized N-doped ultrasmall reduced graphene oxide (N-usRGO) has been synthesized through 1,3-dipolar cycloaddition of azomethine ylides. The obtained product (N-usRGO/SiPc) was characterized by transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, Raman spectra, X-ray photoelectron spectroscopy, fluorescence, and UV-vis spectroscopy. The results demonstrate that SiPc has been successfully grafted on the surface of N-usRGO. The N-usRGO/SiPc nanocomposite exhibits high light-harvesting efficiency covering a range of wavelengths from the ultraviolet to visible light. The efficient fluorescence quenching and the enhanced photocurrent response confirm that the photoinduced electron transfers from the SiPc moiety to the N-usRGO sheet. Moreover, we chose Pt nanoparticles as cocatalyst to load on N-usRGO/SiPc sheets to obtain the optimal H2 production effect. The platinized N-usRGO/SiPc (N-usRGO/SiPc/Pt) demonstrates good hydrogen evolution performance under both UV-vis and visible light (λ>400 nm) irradiation. The apparent quantum yields are 1.3% and 0.56% at 365 and 420 nm, respectively. These results reveal that N-usRGO/SiPc/Pt nanocomposite, consolidating the advantages of SiPc, N-usRGO, and Pt NPs, can be a potential candidate for hydrogen evolution from water under UV-vis or visible light irradiation.

Keywords: N-doped ultrasmall graphene; hydrogen evolution; photocatalysis; silicon phthalocyanine.

Publication types

  • Research Support, Non-U.S. Gov't