Measurement of Head Impact Due to Standing Fall in Adults Using Anthropomorphic Test Dummies

Ann Biomed Eng. 2015 Sep;43(9):2143-52. doi: 10.1007/s10439-015-1255-1. Epub 2015 Jan 22.

Abstract

The kinematics and kinetics of head impact due to a standing fall onto a hard surface are summarized. Head injury due to impact from falls represents a significant problem, especially for older individuals. When the head is left unprotected during a fall, the impact severity can be high enough to cause significant injury or even death. To ascertain the range of head impact parameters, the dynamic response was captured for the pedestrian version of the 5th percentile female and 50th percentile male Hybrid III anthropomorphic test dummies as they were dropped from a standing position with different initial postures. Five scenarios of falls were considered including backward falls with/without hip flexion, forward falls with/without knee flexion and lateral falls. The results show that the head impact parameters are dependent on the fall scenario. A wide range of impact parameters was observed in 107 trials. The 95% prediction interval for the peak translational acceleration, peak angular acceleration, peak force, impact translational velocity and peak angular velocity are 146-502 g, 8.8-43.3 krad/s(2), 3.9-24.5 kN, 2.02-7.41 m/s, and 12.9-70.3 rad/s, respectively.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acceleration
  • Accidental Falls*
  • Adult
  • Biomechanical Phenomena
  • Craniocerebral Trauma*
  • Female
  • Humans
  • Male
  • Models, Biological*