Cellular RNA is chemically modified by exposure to air pollution mixtures

Inhal Toxicol. 2015 Jan;27(1):74-82. doi: 10.3109/08958378.2014.987361.

Abstract

RNAs are more susceptible to modifications than DNA, and chemical modifications in RNA have an effect on their structure and function. This study aimed to characterize chemical effects on total RNA in human A549 lung cells after exposure to elevated levels of major secondary air pollutants commonly found in urban locations, including ozone (O3), acrolein (ACR) and methacrolein (MACR). Enzyme-linked immunosorbent assays (ELISA) were used to measure levels of interleukin (IL)-8 in the growth media and 8-oxoguanine (8OG) levels in total cellular RNA, and lactate dehydrogenase (LDH) in the growth media was measured by a coupled enzymatic assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure levels of microRNA 10b (miR-10b). The study found that 1-h exposure to all tested pollutant mixtures consistently caused significant increases in the levels of 8OG in total RNA. In the case of 4 ppm O3 exposures, measured levels of IL-8, LDH and miR-10b each showed consistent trends between two independent trials, but varied among these three targets. After 1-h exposures to an ACR+MACR mixture, measured levels of IL-8, LDH and miR-10b showed variable results. For mixtures of O3+ACR+MACR, IL-8 measurements showed no change; miR-10b and LDH showed variable results. The results indicate that short-term high-concentration exposures to air pollution can cause RNA chemical modifications. Chemical modifications in RNAs could represent more consistent markers of cellular stress relative to other inflammation markers, such as IL-8 and LDH, and provide a new biomarker endpoint for mechanistic studies in toxicity of air pollution exposure.

Keywords: 8-oxoguanine; RNA oxidation; air pollution exposure; exposure biomarker; human lung; ozone; toxicity endpoint; volatile organic compound.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acrolein / analogs & derivatives*
  • Acrolein / toxicity
  • Air Pollutants / toxicity*
  • Air Pollution / adverse effects
  • Cell Line, Tumor
  • Guanine / analogs & derivatives*
  • Guanine / metabolism
  • Humans
  • Interleukin-8 / metabolism
  • L-Lactate Dehydrogenase / metabolism
  • Ozone / toxicity*
  • RNA / metabolism*

Substances

  • Air Pollutants
  • CXCL8 protein, human
  • Interleukin-8
  • 8-hydroxyguanine
  • Guanine
  • RNA
  • Ozone
  • Acrolein
  • methacrylaldehyde
  • L-Lactate Dehydrogenase