Ring expansion reactions of pentaphenylborole with dipolar molecules as a route to seven-membered boron heterocycles

Inorg Chem. 2015 Feb 16;54(4):1869-75. doi: 10.1021/ic502784d. Epub 2015 Jan 17.

Abstract

Reactions of pentaphenylborole with isocyanates, benzophenone, and benzaldehyde produced new seven-membered heterocycles in high yields. For 1-adamantyl isocyanate, a BNC5 heterocycle was obtained from the insertion of the C-N moiety into the five-membered borole, whereas for 4-methoxyphenyl isocyanate, a BOC5 heterocycle was generated from the insertion of the C-O unit. These reactions are believed to occur via a mechanism wherein coordination of the nucleophile to the borole (1-adamantyl, N-coordination or O-coordination for 4-methoxyphenyl) is followed by ring expansion to afford the observed seven-membered heterocycles. The selectivity to form B-O- or B-N-containing heterocycles is based on the polarization of the isocyanate implying tunable reactivity for the system. Having observed that isocyanates react as 1,2-dipoles with pentaphenylborole, we examined benzophenone and benzaldehyde, which both reacted to insert C-O units into the ring. This represents a new efficient method for preparing rare seven-membered boracycles.