Adaptation in hindsight: dynamics and drivers shaping urban wastewater systems

J Environ Manage. 2015 Mar 15:151:404-15. doi: 10.1016/j.jenvman.2014.12.047. Epub 2015 Jan 13.

Abstract

Well-planned urban infrastructure should meet critical loads during its design lifetime. In order to proceed with design, engineers are forced to make numerous assumptions with very little supporting information about the development of various drivers. For the wastewater sector, these drivers include the future amount and composition of the generated wastewater, effluent requirements, technologies, prices of inputs such as energy or chemicals, and the value of outputs produced such as nutrients for fertilizer use. When planning wastewater systems, there is a lack of methods to address discrepancies between the timescales at which fundamental changes in these drivers can occur, and the long physical life expectancy of infrastructure (on the order of 25-80 years). To explore these discrepancies, we take a hindsight perspective of the long-term development of wastewater infrastructure and assess the stability of assumptions made during previous designs. Repeatedly we find that the drivers influencing wastewater loads, environmental requirements or technological innovation can change at smaller timescales than the infrastructure design lifetime, often in less than a decade. Our analysis shows that i) built infrastructure is continuously confronted with challenges it was not conceived for, ii) significant adaptation occurs during a structure's lifetime, and iii) "muddling-through" is the pre-dominant strategy for adaptive management. As a consequence, we argue, there is a need to explore robust design strategies which require the systematic use of scenario planning methods and instruments to increase operational, structural, managerial, institutional and financial flexibility. Hindsight studies, such as this one, may inform the development of robust design strategies and assist in the transition to more explicit forms of adaptive management for urban infrastructures.

Keywords: Adaptive management; Complexity; Hindsight; Planning; Uncertainty; Urban infrastructure; Wastewater.

MeSH terms

  • Cities*
  • Time Factors
  • Waste Disposal, Fluid / methods*
  • Wastewater*

Substances

  • Waste Water