Viologen-templated arrays of cucurbit[7]uril-modified iron-oxide nanoparticles

Chemistry. 2015 Mar 16;21(12):4607-13. doi: 10.1002/chem.201405774. Epub 2015 Jan 12.

Abstract

Magnetic and fluorescent assemblies of iron-oxide nanoparticles (NPs) were constructed by threading a viologen-based ditopic ligand, DPV(2+), into the cavity of cucurbituril (CB[7]) macrocycles adsorbed on the surface of the NPs. Evidence for the formation of 1:2 inclusion complexes that involve DPV(2+) and two CB[7] macrocycles was first obtained in solution by (1)H NMR and emission spectroscopy. DPV(2+) was found to induce self-assembly of nanoparticle arrays (DPV(2+)⊂CB[7]NPs) by bridging CB[7] molecules on different NPs. The resulting viologen-crosslinked iron-oxide nanoparticles exhibited increased saturation magnetization and emission properties. This facile supramolecular approach to NP self-assembly provides a platform for the synthesis of smart and innovative materials that can achieve a high degree of functionality and complexity and that are needed for a wide range of applications.

Keywords: microporosity; self-assembly; solid-state fluorescence; superparamagnetic nanoparticles; surface modification.