Enantioselective Dissipation of Acephate and Its Metabolite, Methamidophos, during Tea Cultivation, Manufacturing, and Infusion

J Agric Food Chem. 2015 Feb 4;63(4):1300-1308. doi: 10.1021/jf504916b. Epub 2015 Jan 26.

Abstract

The enantioselective dissipation of acephate and its metabolite, methamidophos, was investigated during tea cultivation, manufacturing, and infusion, using QuEChERS sample preparation technique and gas chromatography coupled with a BGB-176 chiral column. Results showed that (+)-acephate and (-)-acephate dissipated following first-order kinetics in fresh tea leaves with half-lives of 1.8 and 1.9 days, respectively. Acephate was degraded into a more toxic metabolite, methamidophos. Preferential dissipation and translocation of (+)-acephate may exist in tea shoots, and (-)-methamidophos was degraded more rapidly than (+)-methamidophos. During tea manufacturing, drying and spreading (or withering) played important roles in the dissipation of acephate enantiomers. The enantiometic fractions of acephate changed from 0.495-0.496 to 0.479-0.486 (P ≤ 0.0081), whereas those of methamidophos changed from 0.576-0.630 to 0.568-0.645 (P ≤ 0.0366 except for green tea manufacturing on day 1), from fresh tea leaves to made tea. In addition, high transfer rates (>80%) and significant enantioselectivity (P ≤ 0.0042) of both acephate and its metabolite occurred during tea brewing.

Keywords: acephate; enantioselectivity; infusion; manufacturing; metabolite; tea.