Semiconducting single crystals comprising segregated arrays of complexes of C60

J Am Chem Soc. 2015 Feb 18;137(6):2392-9. doi: 10.1021/ja512959g. Epub 2015 Feb 9.

Abstract

Although pristine C60 prefers to adopt a face-centered cubic packing arrangement in the solid state, it has been demonstrated that noncovalent-bonding interactions with a variety of molecular receptors lead to the complexation of C60 molecules, albeit usually with little or no control over their long-range order. Herein, an extended viologen-based cyclophane—ExBox2(4+)—has been employed as a molecular receptor which, not only binds C60 one-on-one, but also results in the columnar self-assembly of the 1:1 inclusion complexes under ambient conditions. These one-dimensional arrays of fullerenes stack along the long axis of needle-like single crystals as a consequence of multiple noncovalent-bonding interactions between each of the inclusion complexes. The electrical conductivity of these crystals is on the order of 10(-7) S cm(-1), even without any evacuation of oxygen, and matches the conductivity of high-quality, unfunctionalized C60-based materials that typically require stringent high-temperature vaporization techniques, along with the careful removal of oxygen and moisture, prior to measuring their conductance.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Crystallization
  • Crystallography, X-Ray
  • Fullerenes / chemistry*
  • Semiconductors*

Substances

  • Fullerenes
  • fullerene C60