Cladding layer on well-defined double-wall TiO2 nanotubes

Langmuir. 2015 Feb 3;31(4):1575-80. doi: 10.1021/la504670p. Epub 2015 Jan 22.

Abstract

Highly ordered double-wall TiO2 nanotube arrays were obtained by a two-step anodization method in a fluoride-containing glycerol based electrolyte. The low water and fluoride content and high viscosity of the electrolyte support a partly undissolved fluoride-rich layer, and its hydrolyzed products remain on the tube walls. The double-wall structure and a cladding layer originating from the fluoride-rich layer were clearly observed after annealing. The morphology and crystal structure of the cladding layer were investigated. The study of the cladding layer gives a fundamental insight into the wall structure design of the anodic TiO2 nanotubes in the glycerol-based electrolyte.