Quantum dynamics study on the CHIPR potential energy surface for the hydroperoxyl radical: the reactions O + OH⇋O2 + H

J Chem Phys. 2015 Jan 7;142(1):014309. doi: 10.1063/1.4905292.

Abstract

Quantum scattering calculations of the O((3)P)+OH((2)Π)⇌O2((3)Σg (-))+H((2)S) reactions are presented using the combined-hyperbolic-inverse-power-representation potential energy surface [A. J. C. Varandas, J. Chem. Phys. 138, 134117 (2013)], which employs a realistic, ab initio-based, description of both the valence and long-range interactions. The calculations have been performed with the ABC time-independent quantum reactive scattering computer program based on hyperspherical coordinates. The reactivity of both arrangements has been investigated, with particular attention paid to the effects of vibrational excitation. By using the J-shifting approximation, rate constants are also reported for both the title reactions.