Rapid and Sensitive Detection of p53 Based on DNA-Protein Binding Interactions Using Silver Nanoparticle Films and Microwave Heating

Nano Biomed Eng. 2014 Nov 10;6(3):76-84. doi: 10.5101/nbe.v6i3.p76-84.

Abstract

Tumor detection can be carried out via the detection of proteins, such as p53, which is known to play vital role in more than 50% of all cancers affecting humans. Early diagnosis of tumor detection can be achieved by decreasing the lower detection limit of p53 bioassays. Microwave-accelerated bioassay (MAB) technique, which is based on the use of circular bioassay platforms in combination with microwave heating, is employed for the rapid and sensitive detection of p53 protein. Direct sandwich ELISA was constructed on our circular bioassay platforms based on DNA-protein binding interactions. Colorimetric and fluorescence based detection methods were used for room temperature bioassay (control bioassay; total bioassay time is 27 hours) and bioassay using microwave heating (i.e., the MAB technique; total bioassay time is 10 minutes). In the colorimetric based detection, a very high background signal due to the non-specific binding of proteins for the bioassay carried out at room temperature and a LLOD of 0.01 ng/mL for p53 was observed using the MAB technique. The LLOD for the fluorescence-based detection using the MAB technique was found to be 0.01 ng/mL. The use of circular bioassay platforms in the MAB technique results in microwave-induced temperature gradient, where the specific protein binding interactions are significantly accelerated; thereby reducing the background signal and the lower limit of detection of p53 protein.

Keywords: Circular Bioassay Platform; DNA-Protein Binding Interactions; ELISA; Metal Nanoparticles; Microwave-Accelerated Bioassays; Plasmonics; Silver Island Films; p53.