Interplay between disulfide bonding and N-glycosylation defines SLC4 Na+-coupled transporter extracellular topography

J Biol Chem. 2015 Feb 27;290(9):5391-404. doi: 10.1074/jbc.M114.619320. Epub 2015 Jan 7.

Abstract

The extracellular loop 3 (EL-3) of SLC4 Na(+)-coupled transporters contains 4 highly conserved cysteines and multiple N-glycosylation consensus sites. In the electrogenic Na(+)-HCO3(-) cotransporter NBCe1-A, EL-3 is the largest extracellular loop and is predicted to consist of 82 amino acids. To determine the structural-functional importance of the conserved cysteines and the N-glycosylation sites in NBCe1-A EL-3, we analyzed the potential interplay between EL-3 disulfide bonding and N-glycosylation and their roles in EL-3 topological folding. Our results demonstrate that the 4 highly conserved cysteines form two intramolecular disulfide bonds, Cys(583)-Cys(585) and Cys(617)-Cys(642), respectively, that constrain EL-3 in a folded conformation. The formation of the second disulfide bond is spontaneous and unaffected by the N-glycosylation state of EL-3 or the first disulfide bond, whereas formation of the first disulfide bond relies on the presence of the second disulfide bond and is affected by N-glycosylation. Importantly, EL-3 from each monomer is adjacently located at the NBCe1-A dimeric interface. When the two disulfide bonds are missing, EL-3 adopts an extended conformation highly accessible to protease digestion. This unique adjacent parallel location of two symmetrically folded EL-3 loops from each monomer resembles a domain-like structure that is potentially important for NBCe1-A function in vivo. Moreover, the formation of this unique structure is critically dependent on the finely tuned interplay between disulfide bonding and N-glycosylation in the membrane processed NBCe1-A dimer.

Keywords: Disulfide; Glycosylation; Membrane Protein; Protein Folding; Transporter.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Binding Sites / genetics
  • Cysteine / chemistry*
  • Cysteine / genetics
  • Cysteine / metabolism
  • Disulfides / chemistry*
  • Disulfides / metabolism
  • Glycosylation
  • HEK293 Cells
  • Humans
  • Immunoblotting
  • Ion Transport / genetics
  • Microscopy, Fluorescence
  • Molecular Sequence Data
  • Mutation
  • Protein Folding*
  • Protein Multimerization
  • Protein Structure, Secondary
  • Sequence Homology, Amino Acid
  • Sodium-Bicarbonate Symporters / chemistry*
  • Sodium-Bicarbonate Symporters / genetics
  • Sodium-Bicarbonate Symporters / metabolism

Substances

  • Disulfides
  • SLC4A4 protein, human
  • Sodium-Bicarbonate Symporters
  • Cysteine