Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water

ACS Appl Mater Interfaces. 2015 Jan 28;7(3):1795-803. doi: 10.1021/am5074722. Epub 2015 Jan 15.

Abstract

Two dimensional (2-D) Ti3C2Tx nanosheets are obtained by etching bulk Ti3C2Tx powders in HF solution and delaminating ultrasonically, which exhibit excellent removal capacity for toxic Cr(VI) from water, due to their high surface area, well dispersibility, and reductivity. The Ti3C2Tx nanosheets delaminated by 10% HF solution present more efficient Cr(VI) removal performance with capacity of 250 mg g(-1), and the residual concentration of Cr(VI) in treated water is less than 5 ppb, far below the concentration (0.05 ppm) of Cr(VI) in the drinking water standard recommended by the World Health Organization. This kind of 2-D Ti3C2Tx nanosheet can not only remove Cr(VI) rapidly and effectively in one step from aqueous solution by reducing Cr(VI) to Cr(III) but also adsorb the reduced Cr(III) simultaneously. Furthermore, these reductive 2-D Ti3C2Tx nanosheets are generally explored to remove other oxidant agents, such as K3[Fe(CN)6], KMnO4, and NaAuCl4 solutions, by converting them to low oxidation states. These significantly expand the potential applications of 2-D Ti3C2Tx nanosheets in water treatment.

Keywords: Cr(VI); reductive removal; titanium carbide; two-dimensional.

Publication types

  • Research Support, Non-U.S. Gov't