Pillar[5,6]arene-functionalized silicon dioxide: synthesis, characterization, and adsorption of herbicide

Langmuir. 2015 Feb 3;31(4):1454-61. doi: 10.1021/la5050199. Epub 2015 Jan 16.

Abstract

A layer of synthetic supramolecular macrocycles, that is, perhydroxyl-pillar[5]arene and perhydroxyl-pillar[6]arene, has been covalently attached to hydrophilic silica supports through Si-O-Si linkages with a coverage of up to 250 μmol pillar[5,6]arenes/g to form novel absorbent hybrid materials. Their adsorption toward a typical herbicide, namely, paraquat, from its aqueous solution has been investigated. Kinetic studies disclosed that paraquat adsorption fits a first-order kinetic model. Equilibrium adsorption data could be explained very well by the Langmuir equation. The pillar[6]arene-modified materials showed more obvious adsorption as compared with pillar[5]arene-modified ones and the saturation adsorption quantity reached about 0.20 mmol of paraquat per gram of materials. The entire process of adsorption was endothermic, and significantly an elevated temperature led to an increase in the adsorption quantity. This new type of pillarene-based adsorbent materials can be considered as a potential adsorbent for harmful substances removal from wastewaters.