Movement behaviour of the carabid beetle Pterostichus melanarius in crops and at a habitat interface explains patterns of population redistribution in the field

PLoS One. 2014 Dec 31;9(12):e115751. doi: 10.1371/journal.pone.0115751. eCollection 2014.

Abstract

Animals may respond to habitat quality and habitat edges and these responses may affect their distribution between habitats. We studied the movement behaviour of a ground-dwelling generalist predator, the carabid beetle Pterostichus melanarius (Illiger). We performed a mark-recapture experiment in two adjacent habitats; a large plot with oilseed radish (Raphanus sativus) and a plot with rye (Secale cereale). We used model selection to identify a minimal model representing the mark-recapture data, and determine whether habitat-specific motility and boundary behaviour affected population redistribution. We determined movement characteristics of P. melanarius in laboratory arenas with the same plant species using video recording. Both the field and arena results showed preference behaviour of P. melanarius at the habitat interface. In the field, significantly more beetles moved from rye to oilseed radish than from radish to rye. In the arena, habitat entry was more frequent into oilseed radish than into rye. In the field, movement was best described by a Fokker-Planck diffusion model that contained preference behaviour at the interface and did not account for habitat specific motility. Likewise, motility calculated from movement data using the Patlak model was not different between habitats in the arena studies. Motility (m2 d-1) calculated from behavioural data resulted in estimates that were similar to those determined in the field. Thus individual behaviour explained population redistribution in the field qualitatively as well as quantitatively. The findings provide a basis for evaluating movement within and across habitats in complex agricultural landscapes with multiple habitats and habitat interfaces.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Behavior, Animal / physiology*
  • Coleoptera / physiology*
  • Crops, Agricultural
  • Ecosystem
  • Female
  • Movement / physiology*
  • Pest Control
  • Population Dynamics
  • Raphanus*
  • Secale*
  • Video Recording

Grants and funding

This project was financially supported by the strategic research funds of the C.T. de Wit Graduate School for Production Ecology and Resource Conservation (http://www.pe-rc.nl/) and the strategic research program “Sustainable spatial development of ecosystems, landscapes, seas and regions,” which is funded by the Dutch Ministry of Agriculture, Nature Conservation and Food Quality, and carried out by Wageningen University and Research Centre (KB-01-008-024-ALT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.