Quantitative immunofluorescence assay to measure the variation in protein levels at centrosomes

J Vis Exp. 2014 Dec 20:(94):52030. doi: 10.3791/52030.

Abstract

Centrosomes are small but important organelles that serve as the poles of mitotic spindle to maintain genomic integrity or assemble primary cilia to facilitate sensory functions in cells. The level of a protein may be regulated differently at centrosomes than at other .cellular locations, and the variation in the centrosomal level of several proteins at different points of the cell cycle appears to be crucial for the proper regulation of centriole assembly. We developed a quantitative fluorescence microscopy assay that measures relative changes in the level of a protein at centrosomes in fixed cells from different samples, such as at different phases of the cell cycle or after treatment with various reagents. The principle of this assay lies in measuring the background corrected fluorescent intensity corresponding to a protein at a small region, and normalize that measurement against the same for another protein that does not vary under the chosen experimental condition. Utilizing this assay in combination with BrdU pulse and chase strategy to study unperturbed cell cycles, we have quantitatively validated our recent observation that the centrosomal pool of VDAC3 is regulated at centrosomes during the cell cycle, likely by proteasome-mediated degradation specifically at centrosomes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Cell Cycle
  • Centrosome / chemistry*
  • Cilia / metabolism
  • Fluorescent Antibody Technique*
  • Humans
  • Microscopy, Fluorescence / methods*
  • Proteins / analysis*
  • Spindle Apparatus / metabolism

Substances

  • Proteins