Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays

J Neurosci Methods. 2015 Mar 15:242:15-40. doi: 10.1016/j.jneumeth.2014.12.010. Epub 2014 Dec 24.

Abstract

Background: Intracortical electrode arrays that can record extracellular action potentials from small, targeted groups of neurons are critical for basic neuroscience research and emerging clinical applications. In general, these electrode devices suffer from reliability and variability issues, which have led to comparative studies of existing and emerging electrode designs to optimize performance. Comparisons of different chronic recording devices have been limited to single-unit (SU) activity and employed a bulk averaging approach treating brain architecture as homogeneous with respect to electrode distribution.

New method: In this study, we optimize the methods and parameters to quantify evoked multi-unit (MU) and local field potential (LFP) recordings in eight mice visual cortices.

Results: These findings quantify the large recording differences stemming from anatomical differences in depth and the layer dependent relative changes to SU and MU recording performance over 6-months. For example, performance metrics in Layer V and stratum pyramidale were initially higher than Layer II/III, but decrease more rapidly. On the other hand, Layer II/III maintained recording metrics longer. In addition, chronic changes at the level of layer IV are evaluated using visually evoked current source density.

Comparison with existing method(s): The use of MU and LFP activity for evaluation and tracking biological depth provides a more comprehensive characterization of the electrophysiological performance landscape of microelectrodes.

Conclusions: A more extensive spatial and temporal insight into the chronic electrophysiological performance over time will help uncover the biological and mechanical failure mechanisms of the neural electrodes and direct future research toward the elucidation of design optimization for specific applications.

Keywords: Electrochemical impedance spectroscopy; Electrophysiology; Firing rate; Gamma oscillations; Microelectrode arrays; Power density spectra; Signal-to-noise; Visual cortex; Visual evoked activity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dielectric Spectroscopy
  • Electric Impedance
  • Electrodes, Implanted*
  • Evoked Potentials
  • Immunohistochemistry
  • Mice, Inbred C57BL
  • Microelectrodes
  • Neurons / physiology
  • Photic Stimulation
  • Rest
  • Signal Processing, Computer-Assisted
  • Time Factors
  • Visual Cortex / anatomy & histology
  • Visual Cortex / physiology
  • Visual Perception / physiology