Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification

Phys Rev Lett. 2014 Dec 12;113(24):243601. doi: 10.1103/PhysRevLett.113.243601. Epub 2014 Dec 8.

Abstract

Optical transport represents a natural route towards fast communications, and it is currently used in large scale data transfer. The progressive miniaturization of devices for information processing calls for the microscopic tailoring of light transport and confinement at length scales appropriate for upcoming technologies. With this goal in mind, we present a theoretical analysis of a one-dimensional Fabry-Perot interferometer built with two highly saturable nonlinear mirrors: a pair of two-level systems. Our approach captures nonlinear and nonreciprocal effects of light transport that were not reported previously. Remarkably, we show that such an elementary device can operate as a microscopic integrated optical rectifier.