Two-dimensional material confined water

Acc Chem Res. 2015 Jan 20;48(1):119-27. doi: 10.1021/ar500306w. Epub 2014 Dec 24.

Abstract

CONSPECTUS: The interface between water and other materials under ambient conditions is of fundamental importance due to its relevance in daily life and a broad range of scientific research. The structural and dynamic properties of water at an interface have been proven to be significantly difference than those of bulk water. However, the exact nature of these interfacial water adlayers at ambient conditions is still under debate. Recent scanning probe microscopy (SPM) experiments, where two-dimensional (2D) materials as ultrathin coatings are utilized to assist the visualization of interfacial water adlayers, have made remarkable progress on interfacial water and started to clarify some of these fundamental scientific questions. In this Account, we review the recently conducted research exploring the properties of confined water between 2D materials and various surfaces under ambient conditions. Initially, we review the earlier studies of water adsorbed on hydrophilic substrates under ambient conditions in the absence of 2D coating materials, which shows the direct microscopic results. Subsequently, we focus on the studies of water adlayer growth at both hydrophilic and hydrophobic substrates in the presence of 2D coating materials. Ice-like water adlayers confined between hydrophobic graphene and hydrophilic substrates can be directly observed in detail by SPM. It was found that the packing structure of the water adlayer was determined by the hydrophilic substrates, while the orientation of intercalation water domains was directed by the graphene coating. In contrast to hydrophilic substrates, liquid-like nanodroplets confined between hydrophobic graphene and hydrophobic substrates appear close to step edges and atomic-scale surface defects, indicating that atomic-scale surface defects play significant roles in determining the adsorption of water on hydrophobic substrates. In addition, we also review the phenomena of confined water between 2D hydrophilic MoS2 and the hydrophilic substrate. Finally, we further discuss researchers taking advantage of 2D graphene coatings to stabilize confined water nanodroplets to manipulate nanofluidics through applying an external force by using novel SPM techniques. Moreover, for future technology application purposes, the doping effect of confined water is also discussed. The use of 2D materials as ultrathin coatings to investigate the properties of confined water under ambient conditions is developing and recognized as a profound approach to gain fundamental knowledge of water. This ideal model system will provide new opportunities in various research fields.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Graphite / chemistry
  • Hydrophobic and Hydrophilic Interactions
  • Nanotechnology
  • Surface Properties
  • Water / chemistry*

Substances

  • Water
  • Graphite